Current Status of the National Ambient Air Quality Standards in the US

Christopher A. Noble Center for Engineering and Environmental Technology Research Triangle Institute Research Triangle Park, NC 27709 noble@rti.org

- To provide an overview of the US national ambient air quality standards (NAAQS), which are set by the US Environmental Protection Agency (EPA), focusing on current knowledge of particulate matter (PM)
 - Atmospheric chemistry and physics
 - Conventional measurements
 - Exposure-dose-response relationship
 - Novel measurements

Air pollution system

Noble et al. Phys. World 1998, 11, 39.

Impact of air pollution

- Human health effects
 - Human morbidity and mortality
 - US EPA primary standard—"public health"
- Environmental effects
 - Animals, vegetation, crops, soil, water, buildings, visibility, weather, climate, *etc.*—"public welfare"
 - US EPA secondary standard

US national ambient air quality standards

Pollutant	Standard
Carbon monoxide (CO)	9 ppm (8 hr average)
	35 ppm (1 hr average)
Ozone (O ₃)	0.12 ppm (1 hr average)
	0.08 ppm (8 hr average)
Nitrogen dioxide (NO ₂)	0.053 ppm (annual mean)
Sulfur dioxide (SO ₂)	0.03 ppm (annual mean)
	0.14 ppm (24 hr average)
	0.50 ppm (3 hr average)
Lead (Pb)	1.5 µg·m ⁻³ (quarterly mean)
Particulate (PM ₁₀)	$50 \mu\text{g} \cdot \text{m}^{-3}$ (annual mean)
	150 μ g·m ⁻³ (24 hr average)
Particulate (PM _{2.5})	15 µg·m ⁻³ (annual mean)
	$65 \mu \text{g} \cdot \text{m}^{-3}$ (24 hr average)

Key milestones in US air quality standards for PM

- 1971—promulgation of total suspended particulates (TSP) standard, which measures "total" PM mass concentration
- 1978—promulgation of particulate Pb standard
- 1987—promulgation of PM₁₀ standard
- 1997—promulgation of revised PM₁₀ standard and introduction of PM_{2.5} standard (also a revision of the O₃ standard)

- 1997—promulgation of $PM_{2.5}$ and revision of PM_{10}
- 1998—PM_{2.5} standard challenged in court
- 1999—US Court of Appeals remanded PM_{2.5}
 standard back to EPA for revision
- 2001—US Supreme Court decision
 - EPA has the right to promulgate a $PM_{2.5}$ standard
 - Compliance costs should not be considered
 - PM_C should replace PM_{10}

Complexity and diversity of atmospheric PM

- Physical characteristics
 - Size distribution (aerodynamic, physical, etc.)
 - Concentration (mass or number)
- Chemical characteristics
 - Composition (chemical or elemental)
 - Acidity/alkalinity
- Temporal characteristics
- Spatial characteristics

Physical and chemical characteristic of atmospheric PM

Particle size distribution by different PM properties

Whitby. Atmos. Environ. 1978, 12, 135.

Chemical characteristics of atmospheric PM

RTI

Hughes et al. Environ. Sci. Technol. 1999, 33, 3506.

Particle-bound water as a function of humidity

RT

US Environmental Protection Agency. Report EPA-600/P-99-002aB; 2001.

Temporal characteristics

Noble et al. manuscript in preparation.

Noble et al. Appl. Occup. Environ. Hyg. 1998, 13, 439.

Single atmospheric particles

Ebert et al. J. Aerosol Sci. 2000, 31, 613.

Conventional PM monitoring

- Sample collection—filtration
- Physical characteristics
 - Size specific
 - Mass concentration
- Chemical characteristics—non-specific
- Temporal characteristics—24 h integrated sampling
- Spatial characteristics—PM measurement networks

US nationwide trend in ambient PM₁₀ concentration

<u>/RT</u>

US Environmental Protection Agency. Report EPA-454/R-00-002; 2000.

Annual mean PM_{10} concentration in 1999

Fitz-Simons et al. Analyses of 1999 PM data for the PM NAAQS review, 2000.

RTI

- Measurement performed by a federal reference method (FRM) or federal equivalent method (FEM)
- FRM explicitly specified
 - Design-based criteria
 - Performance-based criteria
- Improved quality control (QC)
- Increased sample precision

Annual mean $PM_{2.5}$ concentration in 1999

Fitz-Simons et al. Analyses of 1999 PM data for the PM NAAQS review, 2000.

Instrumental schematic PM₁₀ and PM_{2.5}

PM_C data by subtraction of $PM_{2.5}$ from PM_{10}

Average PM2.5, Coarse, & PM10 Concentrations - Philadelphia Site

Vanderpool et al. manuscript in preparation.

Annual mean PM_c concentration in 1999

Fitz-Simons et al. Analyses of 1999 PM data for the PM NAAQS review, 2000.

Some (of the many) remaining uncertainties

- "Major" uncertainties
 - What is the causal agent in PM for the observed health effects?
 - What is the injurious biological mechanism?
- "Minor" uncertainties
 - What should be done about particulate water?
 - What should be the temporal resolution of the ambient measurements?

PM research priorities from National Research Council

- Investigate ambient levels vs. personal exposure
- Assess hazardous PM components
- Develop measurement and analysis tools
- Determine exposure to susceptible subpopulations
- Develop source-receptor measurement tools
- Develop modeling tools
- Examine combined effects of gaseous copollutants
- Study mechanisms of injury

Considerations for personal exposure determination

- Time spent in each microenvironment
 - Outdoor
 - Home
 - Office
 - Public buildings
- PM concentration in each microenvironment
 - Indoor sources
 - Building ventilation

Monn. Atmos. Environ. 2000, 35, 1.

Microenvironment exposure-dose relationship

Monn. Atmos. Environ. 2000, 35, 1.

Indoor vs. outdoor concentrations

Sarnet et al. J. Air Waste Manage. Assoc. 2000, 50, 1184.

Influence of activity on indoor PM concentration

• Physical characteristics

Instrument dependent—size, concentration, etc.

• Chemical characteristics

Instrument dependent—nitrate, metals, etc.

• Temporal characteristics

Instrument dependent—real-time (<1 h)

• Spatial characteristics

Currently, single prototype instruments

Aerosol time-of-flight mass spectrometry

Noble et al. Aerosol Sci. Technol. 1998, 29, 294.

Liu et al. Aerosol Sci. Technol. 2000, 33, 71.

Real-time measurement of sea salt particles

Noble et al. Geophys. Res. Lett. 1997, 24, 2753.

- US Supreme Court decided that EPA has the right to promulgate PM standards
- Air quality standards should be based on most current scientific knowledge
 - Atmospheric chemistry and physics
 - Conventional measurements
 - Exposure-dose-response relationship
 - Novel measurements

Future directions of ambient PM monitoring

- US national ambient air quality standards
 - PM₁₀—will be phased out of NAAQS
 - PM_{2.5}—will remain a standard
 - PM_C—will "replace" PM₁₀ standard
- EPA "PM Health Center" program
- EPA "PM Supersites" program
 - Characterize ambient PM
 - Conduct methods testing

Partial reference list

- US national ambient air quality standards
 - Noble *et al.* Federal reference and equivalent methods for measuring fine particulate matter. *Aerosol Sci. Technol.* **2000**, *34*, 219.
 - US Environmental Protection Agency. Report EPA-600/P-99-002aB; 2001. (http://www.epa.gov/ncea/partmatt.htm)
 - US National Research Council. Research Priorities for Airborne Particulate Matter. I. Immediate Priorities and a Long-Range Research Portfolio; 1998.

• Particulate matter sampling

- Johnston *et al.* Mass spectrometry of individual aerosol particles. *Anal. Chem.* **1995**, *67*, A721.
- Noble et al. Air pollution: the role of particles. Phys. World 1998, 11, 39.
- Rodes et al. Indoor aerosols and aerosol exposure. In *Aerosol Measurement*, 1993, Chapter 30.

