Recovery of phosphate

Paul Roeleveld STOWA Dutch Foundation of Applied Water Research

Traditional P-cycle

Modern throughput P-system

Future P-cycle

P-recovery

Stimulating factors:

- EC Urban Waste Water Treatment Directive
- Limits to sludge spreading
- High sludge treatment costs (The Netherlands, Japan)
- P-recovery policy of industry (CEEP)
- P-recovery policy of government (Sweden, UK)
- Struvite deposit problems
- A demand for sustainable phophorous resources

Drivers for the water industry

Potential for cost savings:

chemical addition and sludge handling costs

Potential for cost recovery:

sale of recovered phosphate product

Potential to enhance phosphorus removal:

achieve lower effluent phosphorus concentrations

P-recovery techniques

Biological P-removal is a facilitating process

- Calcium phosphate formation (Crystallactor®)
- Struvite precipitation (Phosnix®)
- Precipitation as aluminium or iron phosphate
- ... But also ion exchange resins, magnetic seperation, adsorption ...

And there are also different techniques for incinerated sewage sludge

Calcium phosphate

Calcium phosphate (Crystallactor®)

- A few full scale reactors are in operation
- High quality product
- Can be used by fertiliser industry and phosphate industry

Crystallactor® at Geestmerambacht, The Netherlands

Struvite

Struvite (Phosnix®)

- Good experience on full scale in Japan and Italy
- High quality product
- Can be used as fertiliser or in certain phosphate industry process routes

Ube Industries Sakai plant, Japan

Economic feasibility

Feasiblity depends strongly on circumstances per country, determining factors are:

- P-concentration in influent
- sludge handling costs
- costs of the P-recovery technique
- market value of P-recovery products

Publicity on P-recovery

Several activities to reach all actors:

- SCOPE newsletter
- two special issues of Environmental Technology
- 1st Int. Conf. in Warwick in 1998 (100 visitors)
- 2nd Int. Conf. in Noordwijkerhout in 2001 (270 visitors)

Inventory study in The Netherlands

Clients: STOWA, Thermphos and CEEP

Consultant: Haskoning B.V.

Objective:

Which phosphate rich streams are available from wwtp's that can be used for production of elementary phosphorus?

Thermphos B.V.

Base material: Phosphate ore (600.000 tons/year)

Phosphate usage: 190.000 tons P₂O₅/ year

Production: Elementary phosphorus

Aim: Replacement of 20% base material by phosphate rich streams within 5 years

Option: Usage of phosphate-rich sludge from wwtp's

Requirements for P-rich streams

• **Dry solids:** > 75%

• P_2O_5 : > 18% of dry solids

• Iron (Fe): Maximum of 0.5% if $P_2O_5=20\%$

£ 2000 tons / year extra

Zinc (Zn): £ 20 tons / year extra

• Cu / Cr / Ni / Co / V: £2 tons / year extra

Phosphate flow through wwtp's

Requirements versus availability

Phosphate flow through wwtp's

Solutions

Metal concentration too high:

- dosing of aluminium chemicals at wwtp's
- implementation of side-stream processes
 - e.g. with the Crystallactor®

P₂O₅ concentration too low:

- implementation of side-stream processes
 - e.g. with the Crystallactor®

Side-stream implementation

Qualification of side-stream sludge

Precipitation

Crystallactor®

Perspective for The Netherlands

Current: 72 wwtp's with Bio-P removal

Within 2010 : 29 to be built with Bio-P removal

Max. 5% of Thermphos base material

Conclusions of the inventory

- Yearly amount of P₂O₅ from wwtp's: 24.000 tons
- Main bottlenecks for usage by Thermphos B.V.:
 - Too low dry solids concentration
 - Too low P₂O₅ concentration
 - Too high metal concentration (Fe / Cu / Zn)
- Direct usage of wwtp-sludge : Not feasible

Solution: implementation of Crystallactor®

Covers all bottlenecks

About 5% of Thermphos base material can be made available within 2010

Result from the 2nd Int. Conf.

For the situation in the Netherlands

- Besides Thermphos, also the fertilizer industry became interested
- Therefore the Crystallactor® is not the only option, also struvite and iron precipitation can be applied
- A working group will be formed with all actors in the industrial column of P-recovery, also animal waste, waste processing and different industries
- The P-recovery working group will start a lobby towards the regulators

P-recovery web site

For more information:

visit the P-recovery website on

http://www.nhm.ac.uk/mineralogy/phos

Thank you for your attention