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Understanding and managing water extremes: Machine learning-powered data and 
modeling 

Engineering: enhancing quantitative 
knowledge and capabilities 

to find actionable solution pathways for 
managing the multi-faceted roles of 

water as both a key resource and a source 
of major hazard and risk for society

Georgia Destouni
Royal Swedish Academy of Engineering Sciences – IVA
Euro-CASE 2024

SATORI Research Lab for coupled 
natural-human systems

https://www.satoriresearchlab.org 

https://www.satoriresearchlab.org/


• Floods, droughts and their compounds – floods-after-droughts, heatwaves-
droughts-wildfires, floods-landslides, floods/droughts-pollution/disease-
spreading - can have devastating consequences for society, ecosystems & 
sustainability
• Complex multi-dimensional cause-effect-impact relationships - linked 

atmospheric, hydrological and societal causes & societal and ecosystem impacts
• Key needs for engineering research and practice to meet the challenges of 

accurately quantifying and timely predicting these relationships, identifying 
hotspots of risks in space and warning early in time for occurrences & impacts 
around the world 
• Some highlight examples of how engineering rises to these quantification-

prediction challenges with machine learning-powered data and modeling

Examples: 
Role of engineering for sustainable development
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where t indicates the monthly time step. The initial value of CWD is set to zero. Potential data gaps are filled 
with ET from the GLEAM v3.5a product and precipitation from (a) 0.25°-resolution gridded ERA5 data and (b) 
machine-learning downscaled precipitation product (Besnard et al., 2019). CWD is reset to zero at the end of each 
year to close the annual water balance.
2.2.3. Attribution Analysis
Attribution analysis is conducted to understand spatial patterns of ET and runoff anomalies associated with 
the drought peaks. For this purpose, we train random forests to model ET and runoff anomalies at drought 
peaks, respectively, across all global grid cells with several ancillary land surface data (see Table  1). Using 
cross-validation we ensure a useful model performance with cross-validation out-of-bag R 2 higher than 0.5 
(Breiman, 2001). Then we evaluate the relevance of individual variables using the Shapley Additive Explanations 
(SHAP) attribution method which is a robust explainable machine learning method (Lundberg & Lee, 2017). 
SHAP is a game theoretic approach to explain the output of the random forest model by accounting for contribu-
tions of individual variables to the overall prediction. This way, to understand the most important controls of ET 
responses to drought, we calculate SHAP values to quantify the marginal contributions of each predictor on the 
target variable ET, and rank the variable importance by the sum of absolute contributions across all grid cells. To 
understand the most important controls of runoff responses to drought, we then use runoff anomalies to replace 
ET anomalies to repeat the attribution analysis. When studying spatial patterns of ET anomalies under drought 
we also use runoff drought anomalies as predictors, and vice versa.

3. Results and Discussion
3.1. Detecting Soil Moisture Droughts
The months and years when the driest soil moisture values are detected across the globe are shown in Figure 1. 
Regions over Africa, the Middle East and Greenland are excluded due to the sparse vegetation. The month-of-year 
of drought peak occurrence varies across latitudes: In the northern hemisphere, drought occurs from June to 
October as a consequence of the interplay of limited water input and higher ET in summer and autumn months. 
Near the equator, drought rather occurs from January to May, corresponding to the meteorological dry seasons in 
northern South America, Central Africa, India and Southeast Asia. In the Southern Hemisphere drought occurs 
mostly also in meteorological dry months for example, from July to December in Amazon, except for the south-
ern parts of South America, South Africa and Australia. Drought peak months across Australia are variable 
and are modulated by the local climate regimes (Peel et al., 2007). Spatial patterns of drought years show more 

Figure 1. Timing of drought peaks as detected by monthly soil moisture minima from the observation-based dataset during 
the study period 2001–2015.
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heterogeneity than the month-of-year results, while larger clusters correspond well with drought events reported 
in previous studies, such as the 2003 European drought (Fink et al., 2004), the 2010 western Russian drought 
(Barriopedro et al., 2011), the 2012 Midwest drought in the United States (Rippey, 2015), and the 2010 Amazon 
drought (Lewis et al., 2011).

3.2. Water Cycle Response to Drought in Observation-Based Data
The global distributions of ET and runoff anomalies at soil moisture drought peaks are shown in Figure  2. 
Compared to long-term average conditions, ET shows both increases and decreases under drought (Figure 2a). 
Strongly positive ET anomalies are found in the high latitudes and the tropics, while strongly negative ET anom-
alies occur mostly in the subtropics and mid-latitudes. Negative ET anomalies are larger in an absolute sense 
and more widespread than positive ET anomalies. By contrast, runoff anomalies are negative during drought 
peaks across most of the globe with the strongest negative values located in the Amazon and Asian tropics 
(Figure 2b). Exclusively focusing on ET and runoff negative anomalies which can affect regional ecosystems 
and also socio-economic systems, we find that ET negative anomalies are slightly stronger than runoff negative 
anomalies across the globe (Figure 2c), and the preferential propagation of soil moisture deficits into runoff in 
northern Europe confirms results from a previous study (Orth & Destouni, 2018).

Latitudinal patterns of ET and runoff anomalies in Figure 2d present two peaks of ET surpluses in boreal regions 
around 65°N and around the equator. These regions are typically wet (Figure S1a in Supporting Information S1) 
and energy-limited (Denissen et al., 2021; W. Li et al., 2021) such that even during periods with soil moisture 
deficits, the soil moisture content is sufficient to sustain plant photosynthesis and associated transpiration (O 

Figure 2. Mapping (a) evaporation (ET) and (b) runoff anomalies at drought peaks. (c) Variable with stronger reductions. (d) Latitudinal patterns of ET and runoff 
anomalies. The solid line and shaded areas show the median and interquartile ranges, respectively. In (a, b), area fractions are given for positive and negative changes, 
respectively, and in (c) area fractions are given where ET or runoff are more reduced during peak drought.
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Figure 7. Flood susceptibility maps of Sweden generated with (a) convolutional neural network (CNN), (b) CNN-GWO, and 
(c) CNN-ICA models.

Flood susceptibility map over Sweden

Panahi et al., Earth’s Future, 2023. A country wide evaluation 
of Sweden's spatial flood modeling with optimized 
convolutional neural network algorithms 
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positive impact on flood occurrence, and are therefore suitable candidates for 
inclusion in the modeling process.

Collinearity between factors, especially those that are highly correlated, was 
further investigated through MCS diagnosis. Based on the results (Table 2), 
there is not any multicollinearity among involved parameters/variables.

The spatial relationship between each class of each flood-related factor and 
the historical flood data was analyzed using the FR method (Figure 6). Eleva-
tion classes do not exhibit any distinct importance or pattern, indicating that 
elevation is not a highly effective factor for flood occurrence in Sweden, as 
also indicated by the IGR results.

In terms of slope, the class with values lower than 0.9° has the highest impact 
(FR = 2.77) on flood probability occurrences, with increasing values being 
associated with decreasing importance for flood occurrence. High flood 
susceptibility areas are located in flat areas (FR = 2.94), while north aspect 
has the lowest effect on flood occurrence. Flat curvature has a significant 
effect on flooding (FR = 1.05), followed by convex (FR = 0.62) and concave 
(FR = 0.49) shapes. TWI has a positive impact on flood probability occur-

rence, with values higher than 14.5 having a considerable impact on flooding in Sweden (FR = 2.17). Distance 
of less than 978 m from a river and distance less than 100 m from a lake or wetland area have strong impacts 
on flood occurrence. Rainfall less than 600 mm per year is associated with higher probability of flood occur-
rence. Regarding land use, wetlands have a significant effect on flooding (FR = 5.65), followed by bare soil 
(FR = 1.72), urban (FR = 1.38), moss and lichen (FR = 0.67), snow and ice (FR = 0.56), shrubs (FR = 0.54), 
forest (FR = 0.47), herbaceous vegetation (FR = 0.45), and arable agriculture (FR = 0.15).

4.2. Flood Susceptibility Maps
Most of Sweden, especially in the north and some parts of the center and southeast, emerges as having high 
susceptibility to flood occurrence (Figure 7). The results indicate flood susceptibility to be greater in lowland 
areas, with flat ground slope, and downslope of highland areas with high rainfall.

Although the three models produce similar flood susceptibility maps, there are some differences, as indicated in 
Figure 7. These result in slightly different percentages of flood susceptibility area falling into distinct susceptibil-
ity classes (Figure 8). According to the CNN, CNN-GWO, and CNN-ICA models, 60.31%, 60.16%, and 62.34%, 
respectively, of Sweden's terrain have moderate/high/very high susceptibility to flood occurrence.

Factor Tolerance VIF

Elevation 0.87 1.15
Slope 0.1 9.64
Aspect 0.69 1.44
Plan curvature 0.84 1.20
Length of slope 0.07 1.62
Topographic wetness index 0.22 4.58
Distance from river 0.89 1.12
Distance from wetland 0.45 2.20
Rainfall 0.85 1.18
Land use 0.27 3.70

Table 2 
Results of Multi-Collinearity Statistics Test for the 10 Geo-Environmental 
Factors

Figure 6. Importance of geo-environmental factors for flooding, based on the Frequency Ratio method.

Deciphering 
Importance of 
different geo-
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factors for 

flooding



General message: 
Role of engineering for sustainable development
• Complex interactions - synergies and tradeoffs - inherent to almost all issues 

involved in achieving sustainability
• Measurability of achievement & predictability of evolution - key needs for 

driving progress in achieving the 17 SGDs and their 169 targets
• Good engineering is a fundamental prerequisite for handling & achieving these 

by:
Creatively combining scientific principles from many disciplines to 

o develop & implement solutions to complex problems
o quantify involved complex systems 
o forecast system & solution behaviors under uncertain forthcoming 

scenario conditions 


