Energy and Climate Change

17 Oct First contribution to the Energy Transition National Debate – French and English versions in one report

National Academy of Technologies of France (NATF)
2012
Changes in world-wide energy production and utilisation are partly imposed or voluntarily implemented. France has launched a nation-wide debate on energy-policies with the participation of NATF. This document is a first contribution. It examines also the policy paths chosen respectively by the USA and Germany. Some energy targets can be achieved through demand-control and energy-efficiency, i.e. better building insulation, more efficient household appliances, thermal solar panels, heat pumps, etc. New urban areas need to be energy-lean with little commuting requirements. Fossil fuels should be kept for transport and chemical industry sectors. Vehicles will increasingly use electricity or biofuels. Industrialists stabilise energy requirements through improvement of production processes. French nuclear power capacity will continue, but move to more flexibility, compensating for the intermittency of wind- and solar power. The final goal is the reduction of the GHG emissions at the least cost.
Read More

17 Oct Technology and climate change: several solutions to mitigate the effects and to adapt (Executive Summary in English

National Academy of Technologies of France (NATF)
2016
The report takes stock of available or future technologies for mitigating climate change. First conclusion: climate-engineering, in the current state of knowledge, is not an alternative. It identifies the most favourable conditions, especially in the most contributing sectors, for reducing greenhouse gas (GHG) emissions and promoting preventive adaptation measures, including a carbon emission penalty. The cost of increased energy efficiency must be less than the value of the energy saved and, as the case may be, the worth of CO2 not emitted. The same cost-benefit analysis should apply for any mitigation technology considered. Preventive adaptation measures are possible in agriculture, forestry, energy, urban environment, manufacturing, coastal protection, access to safe water, resources management, etc. Moreover, involving civil society (lifestyles and behaviours) will be important for reducing GHG emissions. And we must not forget technologies in developing countries, which are often more vulnerable to climate change than the richer developed countries.
Read More

17 Oct Big Data: a change of paradigm (Report only in French)

National Academy of Technologies of France (NATF)
2015
Big Data implies a revolution in IT, reaching from technology to applications and practices, enabling the analysis of vast pools of "digital traces". Data manipulation from smartphones and connected objects opens up new service opportunities and cost reductions of IT-systems. While it is a major issue for sciences, politics and citizens, this report looks at the impact on businesses: mastering these methods permits a new immediacy in customer relationships. Big data is a disruptive data-analysis methodology, replacing classic approaches by iterative loops and using detected patterns for operational effectiveness. It is a new way of massive parallel data-centred programming and of designing algorithms, due to treatment on a myriad of machines, high-performance requirements, and development of algorithms through learning. It is a major challenge and paradigm shift for Governments and companies, deserving strong support in terms of training and awareness.
Read More

17 Oct Biogas (Report only in French)

National Academy of Technologies of France (NATF)
2016
EDP Sciences 2016 Biogas, resulting from the decomposition of organic matter, is known since the late 18th century: swamp gas. In Europe, the production of biogas on an industrial scale takes off somewhere between 1980 and 1990. The report describes sources and processes for the generation of biogas: hermetically sealed waste dumps and the capture of biogas from anaerobic digestion; industrial anaerobic fermentation of household waste with different species of bacteria at different temperatures; fermentation of agricultural crop waste and animal droppings; processing of biodegradable sludge from waste water treatment plants; etc. Biogas plants using a second generation methanisation process at high temperatures have been built in Germany and Sweden. Biogas is regarded as a renewable energy but is not fit for industrial use in untreated form as it contains various contaminants that need to be filtered. The success of biogas as a substitute for natural gas depends on the financial incentives granted.
Read More

17 Oct Energy Vectors (English version)

National Academy of Technologies of France (NATF)
2012
Editions Le Manuscrit 2012 Energy procurement/uses, influenced by oil prices and climate change, may differ in different countries. These influences continue but time-scales change (e.g. for peak oil and gas). The Fukushima accident has shaken confidence into nuclear power. This Report proposes a robust methodology for making relevant economic and ecological choices related to energy transition. Focussing on the French situation, it deals with Energy Vectors: the support system delivering energy ready to use (electricity, petrol, gas, or heat, etc.) to consumers; the intermediary stage of vectors between sources (coal, gas, U, wind, hydro) and demand of final energy (for transport, heating, industrial processes, etc.). While end-consumers may not be aware of the source for the final energy, distinguishing between them would allow economic and ecological competition (when C02 emissions carry a price-tag). This report throws new light on the political decisions that must be taken and provides guidelines with a long-range relevance.
Read More

17 Oct NATURAL GAS Essential for Ireland’s Future Energy Security

Irish Academy of Engineering (IAE)
2018
Natural gas plays a critical role in Ireland’s energy mix and economy. Gas provides around 30% of Ireland’s total primary energy and generates about 50% of Ireland’s electricity. Many industries and homes in Ireland depend on gas for heating. Ireland’s Government has a vision of transitioning to a low-carbon economy by 2050. This will require a large increase in renewables and a shift to lower-carbon fuels like natural gas. Natural gas has the lowest carbon emissions of all fossil fuels and is an ideal complement to renewables. Natural gas will be critical for Ireland’s transition to a low-carbon future. Ireland needs to develop alternative sources of gas supply and supply routes. Developing a Liquefied Natural Gas import terminal in Ireland would enhance Ireland’s security of gas supply and provide access to the increasingly competitive global LNG market. Exploration for gas offshore Ireland should also be promoted, with appropriate licensing terms. A strategic national plan is required to diversify Ireland’s gas supply needs.
Read More

17 Oct Impact of ICT on world energy consumption – and carbon footprints (Report only in French)

National Academy of Technologies of France (NATF)
2015
EDP Sciences, 2015 The report analyses the impact of ICT’s worldwide energy consumption and greenhouse-gas emissions, considering the impacts generated by the operation of its various hardware and infrastructure, and the savings it spawns in other areas of activity. Conclusion: The final energy and carbon balance of all ICT categories together is clearly a positive one. In 2012, ICT accounted for 4.7% of worldwide electricity consumption, and a total carbon footprint of about 1.7 percent. These numbers are on an upwards trend, but in smaller proportions than the growing use of ICT, thanks to its contribution to reduce these footprints in other areas of activities such as in the transport sector, buildings, manufacturing industries, or even dematerialised procedures. The report focuses on the (global) transport/mobility sector benefitting from digitisation in and around vehicles and lists current lines of research aimed at better performance of computing, with lower energy consumption.
Read More

08 Juil Methane – where does it come from, what is its impact on the climate? (Report only in French)

National Academy of Technologies of France
(NATF) 2014
EDP Sciences 2014 Strong variations of atmospheric concentrations of the potent greenhouse gas methane have accompanied glacial and interglacial periods - influencing timetable and magnitude of past and present climate changes. The report describes and analyses natural and human-related sources and sinks of atmospheric methane with particular attention to potentially massive emissions from thawing permafrost and clathrates. The methane fluxes between main reservoirs and the atmosphere is measured via ground-based networks or from outer space. As atmospheric methane is destroyed over time (half-life ~7 years), its GHG-efficiency is not straight-forward. While fossil fuel exploitation is an important methane source, emissions could be limited at reasonable cost. Feedbacks from wetlands and soils are more difficult to control. Recommendations are made in areas such as agricultural practices, waste- and landfill management, biomass combustion, exploitation of coal, natural gas and oil. The potential exploitation of methane from permafrost and marine clathrates should be closely followed.
Read More

01 Jan Sustainable new start for Sweden

Royal Swedish Academy of Engineering (IVA)
2019
The corona crisis has had a serious impact on Sweden. The pandemic has forced a shift in political and economic focus to support the most vulnerable. To deal with the immediate effects of the crisis, major public financial investments have therefore been made, both in Sweden and in the rest of Europe. At the same time, the need to transition to a competitive and climate-neutral society remain. The challenge is to maintain the long-term investments needed for Sweden and Europe to achieve the climate targets set, while at the same time making efforts to bring Sweden and Europe out of the pandemic. IVA's Sustainable New Start for Sweden project aims to point out important measures to get the Swedish economy moving again - without losing focus on long-term sustainability goals. Here, IVA's nine recommended actions are presented. The recommendations are based on analyses and suggestions from other IVA projects. Among other things, IVA calls for active cooperation within the EU, for the shortcomings in Sweden's electricity supply to be addressed, for the electrification of transport and industry to be accelerated and for public research investments to increase. The report is available in Swedish.
Read More

08 Sep Decentralised power production needs decentralised storage

Swiss Academy of Engineering Sciences (SATW)
September 2016
Authors: Theodor Borsche, Andreas Ulbig, Göran Andersson Main themes: energy, storage Nature of publication: study Power production in Switzerland is changing. End customers, previously consumers of centrally produced power, are themselves becoming local power producers and storing power for their own needs. In addition to central production in large power stations, there is an increasing number of small power stations producing their own power, in particular using photovoltaic systems. Power generation from new renewable energy sources is not constant or easily predictable. This unusual situation causes problems for network operators. These can be easily technically remedied by furnishing decentralised power production with local storage, but decentralised storage can also be used by a network operator for other tasks: how economic this storage is depending on the tasks which it is able to undertake. SATW commissioned the Power Systems Laboratory at ETH Zürich to investigate how and for what decentralised storage systems could best be used.
Read More