Academy’s advice and position paper

17 Oct Methane

National Academy of Technologies of France (NATF)
2016
Strong variations of atmospheric concentrations of methane, a potent greenhouse gas, have accompanied glacial and interglacial periods. Such variations influence the timetable and magnitude of climate changes. The report describes and analyses natural and human-related sources and sinks of atmospheric methane with particular attention to potentially massive emissions from thawing permafrost in Arctic wetlands and marine methane hydrates (clathrates). The methane fluxes between main reservoirs and the atmosphere is measured via ground-based networks or from outer space, allowing a better understanding of evolving atmospheric concentrations and interaction between sinks and sources. As atmospheric methane is destroyed over time (half-life ~7 years), its CO2 equivalence, in terms of GHG-efficiency is not straight-forward, depending on the time-scale applied.  While increasing fossil fuel exploitation is an important methane source, emissions could be limited at reasonable cost.  Feedbacks from wetlands and soils are more difficult to control. A number of recommendations on how to limit methane release are made in areas such as agricultural practices, waste- and landfill management, biomass combustion, exploitation of coal, natural gas and oil. Carefully follow developments in boreal zones, especially regarding the possible exploitation of methane from permafrost and marine clathrates. Group Leader: Jean-Claude André, Former Director of the European Centre for Research and Advanced Training in Scientific Computing (CERFACS), and NATF Fellow
Read More

17 Oct Report of the National Academy of Technologies of France (NATF) – First contribution to the Energy Transition National Debate

National Academy of Technologies of France (NATF)
2014
Changes in world-wide energy production and utilisation are partly imposed (emerging countries’ energy needs, depletion of some oil/gas fields), or voluntarily implemented (energy autonomy, climate-change policy, industrial competition). France has launched a nation-wide debate on energy-policies with the participation of NATF. This document is a first contribution. It examines also the policy paths chosen respectively by the USA and Germany. Some of the EU 20-20-20, the EU “Roadmap to 2050”, as well as self-imposed energy targets can be achieved through demand-control and energy-efficiency, i.e. better (including older) building insulation, more efficient household appliances, direct heating, thermal solar panels, heat pumps, etc. While new urban areas need to be energy-lean with little commuting requirements, meeting these requirements has a price and needs societal commitment. Fossil fuels should be kept for transport and chemical industry sectors. Vehicles will increasingly use electricity or biofuels. Industrialists stabilise energy requirements through improvement of production processes. French nuclear power capacity will continue, but move to more flexibility, compensating for the intermittency of wind- and solar power. “Smart” grids and non-intermittent renewable energy sources should contribute to power stability. Total savings in French energy consumption could attain –15% by 2025 and –30% by 2050. The final goal is the reduction of the GHG emissions at the least cost. Working-group leader: Bernard Tardieu, Honorary President Coyne & Bellier, President of the Committee on Energy & Climate Change, and NATF Fellow
Read More

17 Oct Technologies and Climate Change – Solutions for Mitigation and Adaptation

National Academy of Technologies of France (NATF)
2016
The report takes stock of available or future technologies for mitigating climate change. First conclusion: climate-engineering, in the current state of knowledge, is not an alternative. Then it identifies the most favourable conditions, especially in the most contributing sectors, for reducing greenhouse gas (GHG) emissions and promoting preventive adaptation measures, including a carbon emission penalty. The cost of increased energy efficiency must be less than the value of the energy saved and, as the case may be, the worth of CO2 not emitted. The same cost-benefit analysis should apply for any mitigation technology considered. Preventive adaptation measures are possible in agriculture, forestry, energy, urban environment, manufacturing, coastal protection, access to safe water, resources management, etc. Moreover, involving civil society (lifestyles and behaviours) will play an important role in reducing GHG emissions. And we must not forget technologies in developing countries, which are often more vulnerable to climate change than the richer developed countries. Working-group leaders: Marion Guillou, President of the Board of the Agronomic, Veterinary and Forest Institute of France – AGREENIUM; and Alain Pavé, University professor and former Research director at CNRS – both are NATF Fellows
Read More

17 Oct Biogas

National Academy of Technologies of France (NATF)
2016
The 14 members of the NATF working group on biogas published its report in early 2016.  Historically speaking, biogas, resulting from the decomposition of organic matter, has been known since the late 18th century, when Alessandro Volta analysed the composition of swamp gas, finding methane as the main component.  In France and India, the exploitation of this process through bacterial “fermentation” in digesters started in the late 19th century while China builds a whole infrastructure around biogas, but always on a local scale, taking advantage of carbon credits from European industry for their funding.  In Europe, the production of biogas on an industrial scale takes off somewhere between 1980 and 1990, while France joins in at a somewhat slower pace than some other countries
Read More

17 Oct Resource Efficiency – Facts and Trends Towards 2050.

Royal Swedish Academy of Engineering (IVA)
2015
A report from IVA project Resource Efficient Business Models – Greater Competitiveness, 2015 36 pp.
Read More

17 Oct IAS statement on development of Energy system in Slovenia until 2030 with a view until 2050 (34 pages)

Engineering Academy of Slovenia (IAS)
2015
IAS has published Statement of the development of energetics in Slovenia that are a result of cooperation between members of IAS as well as other experts, non-members of the Academy. The statement refers to new technologies, climate change, dependence of EU on import of energy, reliability of supply, price fluctuations on global markets and gives advice on these issues.
Read More

17 Oct Biogas (Report only in French)

National Academy of Technologies of France (NATF)
2016
EDP Sciences 2016 Biogas, resulting from the decomposition of organic matter, is known since the late 18th century: swamp gas. In Europe, the production of biogas on an industrial scale takes off somewhere between 1980 and 1990. The report describes sources and processes for the generation of biogas: hermetically sealed waste dumps and the capture of biogas from anaerobic digestion; industrial anaerobic fermentation of household waste with different species of bacteria at different temperatures; fermentation of agricultural crop waste and animal droppings; processing of biodegradable sludge from waste water treatment plants; etc. Biogas plants using a second generation methanisation process at high temperatures have been built in Germany and Sweden. Biogas is regarded as a renewable energy but is not fit for industrial use in untreated form as it contains various contaminants that need to be filtered. The success of biogas as a substitute for natural gas depends on the financial incentives granted.
Read More

17 Oct Energy Vectors (English version)

National Academy of Technologies of France (NATF)
2012
Editions Le Manuscrit 2012 Energy procurement/uses, influenced by oil prices and climate change, may differ in different countries. These influences continue but time-scales change (e.g. for peak oil and gas). The Fukushima accident has shaken confidence into nuclear power. This Report proposes a robust methodology for making relevant economic and ecological choices related to energy transition. Focussing on the French situation, it deals with Energy Vectors: the support system delivering energy ready to use (electricity, petrol, gas, or heat, etc.) to consumers; the intermediary stage of vectors between sources (coal, gas, U, wind, hydro) and demand of final energy (for transport, heating, industrial processes, etc.). While end-consumers may not be aware of the source for the final energy, distinguishing between them would allow economic and ecological competition (when C02 emissions carry a price-tag). This report throws new light on the political decisions that must be taken and provides guidelines with a long-range relevance.
Read More

17 Oct NATURAL GAS Essential for Ireland’s Future Energy Security

Irish Academy of Engineering (IAE)
2018
Natural gas plays a critical role in Ireland’s energy mix and economy. Gas provides around 30% of Ireland’s total primary energy and generates about 50% of Ireland’s electricity. Many industries and homes in Ireland depend on gas for heating. Ireland’s Government has a vision of transitioning to a low-carbon economy by 2050. This will require a large increase in renewables and a shift to lower-carbon fuels like natural gas. Natural gas has the lowest carbon emissions of all fossil fuels and is an ideal complement to renewables. Natural gas will be critical for Ireland’s transition to a low-carbon future. Ireland needs to develop alternative sources of gas supply and supply routes. Developing a Liquefied Natural Gas import terminal in Ireland would enhance Ireland’s security of gas supply and provide access to the increasingly competitive global LNG market. Exploration for gas offshore Ireland should also be promoted, with appropriate licensing terms. A strategic national plan is required to diversify Ireland’s gas supply needs.
Read More